собственный морфизм

собственный морфизм
proper morphism мат.

Русско-английский научно-технический словарь Масловского. 2015.

Игры ⚽ Поможем написать реферат

Look at other dictionaries:

  • СОБСТВЕННЫЙ МОРФИЗМ — морфизм схем, отделимый, универсально замкнутый и имеющий конечный тип. Морфизм схем f : наз. замкнутым, если для любого замкнутого множество f(Z) замкнуто в Y, и универсально замкнутым, если для любой замены базы замкнут морфизм Свойство быть С …   Математическая энциклопедия

  • ПЛОСКИЙ МОРФИЗМ — морфизм схем такой, что для любой точки локальное кольцо является плоским над (см. Плоский модуль). Вообще, пусть пучок модулей, он наз. плоским над Yв точке , если плоский модуль над кольцом …   Математическая энциклопедия

  • БИРАЦИОНАЛЬНЫЙ МОРФИЗМ — морфизм схем, являющийся бирациональным отображением. К наиболее важным примерам Б. м. относятся: нормализация, раздутие, моноидальное преобразование. Любой собственный Б. м. регулярных двумерных схем разлагается в композицию моноидалъных… …   Математическая энциклопедия

  • МОДУЛЕЙ ТЕОРИЯ — теория, изучающая непрерывные семейства объектов алгебраич. геометрии. Пусть А класс объектов алгебраич. геометрии (многообразий, схем, векторных расслоений и т. п.), на к ром задано нек рое отношение эквивалентности R. Основная задача… …   Математическая энциклопедия

  • ОСОБАЯ ТОЧКА — 1) О. т. аналитической функции f(z) препятствие для аналитического продолжения элемента функции f(z) комплексного переменного zвдоль какого либо пути на плоскости этого переменного. Пусть аналитическая функция f(z) определена некоторым… …   Математическая энциклопедия

  • ЗАМЕНА БАЗЫ — теоретико категорная конструкция, частными случаями которой являются понятие индуцированного расслоения в топологии, а также понятие расширения кольца скаляров в теории модулей. Пусть С категория с расслоенными произведениями и g: морфизм этой… …   Математическая энциклопедия

  • ЭТАЛЬНЫЕ КОГОМОЛОГИИ — когомологии пучков в эталъной топологии. Они определяются стандартным образом при помощи производных функторов. А именно, пусть X схема и Xet этальная топология на X. Тогда категория пучков абелевых групп на Xet является абелевой категорией с… …   Математическая энциклопедия

  • ПОЛНОЕ АЛГЕБРАИЧЕСКОЕ МНОГООБРАЗИЕ — обобщение понятия компактного комплексного алгебраич. многообразия. Многообразие Xназ. полным, если для любого многообразия Yпроекция является замкнутым морфизмом, т. е. переводит замкнутые (в топологии Зариского) подмножества в замкнутые… …   Математическая энциклопедия

  • РАМА КОГОМОЛОГИИ — де Р а м а к о г о м о л о г и и, алгебраического многообразия теория когомологий алгебраич. многообразий, основанная на дифференциальных формах. С каждым алгебраич. многообразием Xнад полем kсвязывается комплекс регулярных дифференциальных форм… …   Математическая энциклопедия

  • Когомологии де Рама — Когомологии де Рама  теория когомологий, основанная на дифференциальных формах, и применяемая в теориях гладких и алгебраических многообразий. Названы в честь швейцарского математика де Рама. мерная группа когомологий де Рама многообразия… …   Википедия

  • СХЕМА — окольцованное пространство, локально изоморфное аффинной схеме. Подробнее, С. состоит из топологич. пространстна X (базисного пространства схемы) и пучка коммутативных колец с единицей на Х (структурного пучка схемы); при этом должно существовать …   Математическая энциклопедия

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”